

Prof. Dr. Peter Spathelf, Eberswalde, with Prof. Dr. Mauro Schumacher, Santa Maria April 16, 2024

Pine plantation in South Brazil (Photo: L. Nutto)

Eberswalde University for Sustainable Development

IUFRO centro

JS

Myths and controversies about (fast growing/high yielding) forest plantations

Plantations have the reputation of

- ✓ representing poorly structured stands with low tree species diversity
- ✓ providing low-quality wood products
- negatively affecting regulating and supporting ecosystem services
- 'Plantations are not forests' (Carrere 2004)

<u>Hypothesis:</u> There are options to diversify plantations and manage them in an ecosystem-friendly way!

Outline

- Introduction
- Relevance, definitions and plantation forestry systems
- Providing ecosystem services from pine plantations
- Case study:

Pine plantations in South Brazil

Conclusions

3Peter Spathelf16.04.2024Intern. Webinar cycle in Pine silviculture: III. Pines in South Brazil

https://de.wikipedia.org/wiki/Berlin -Brandenburg

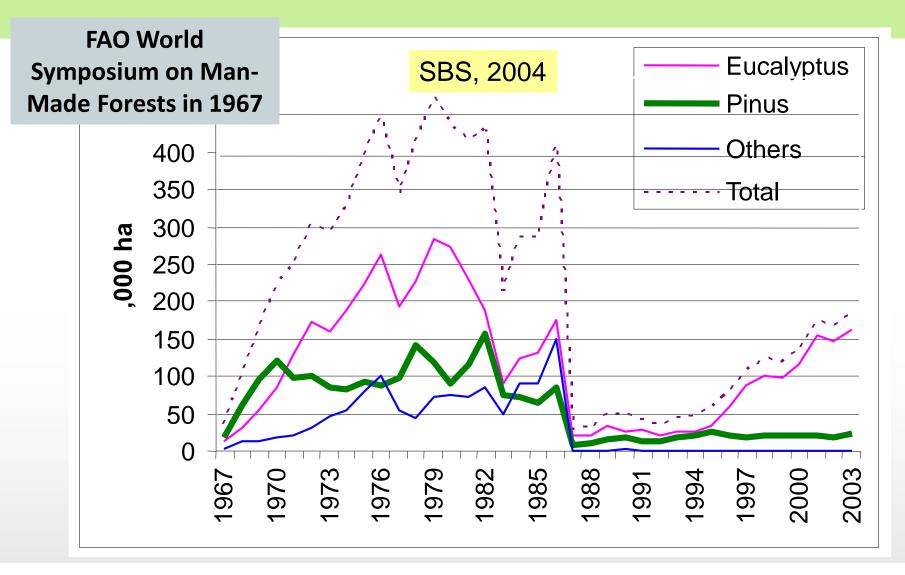
Relevance, definitions and plantation forestry systems

Pine plantation in South Brazil (Photo: L. Nutto, Freiburg)

Contribution of plantation forests to wood production (FAO 1995)

Countries	Area (m	nillion ha)	Share represented by plantations (%)			
	Native forests	Plantations	Forest area	Wood production		
New Zealand	7	1.20	16.1	93		
Brazil	566	7.00	1.2	60		
Chile	7	1.45	17.1	95		
Argentina	34	0.78	2.2	60		
Zimbabwe	32	0.07	0.2	50		
Zambia	9	0.12	1.3	50		
Australia	43	1.00	2.0	50		

 \Rightarrow huge supply – demand gap forecast by 2050 (Dieterle 2018)


Planted forests (PF)

- Plantation forests or Planted forests:
- Forests predominantly composed of trees established through planting and/or seeding of native or introduced species in the process of afforestation or reforestation (...one or two species at planting, even-aged, regular spacing)
- includes planted component in seminatural forests
- Fast-growing and high yielding plantations (FGHY):
- Rotation periods should be less than 30 yrs and MAI > 15 m³ per ha/yr

Financial incentives (Brazil 1967 – 1987)

Area and categories of PF

<u>Area</u>

 <u>~ 294 mill. ha</u> out of 4.000 mill. ha of forests worldwide (→ 7 %); annual increase of 3-5 mill. ha (FAO 2020); 29 % in tropics & subtropics and 56 % in the temperate zone; less than 20 % is alien species; focus on Asia (45 %)

Categories

≻either

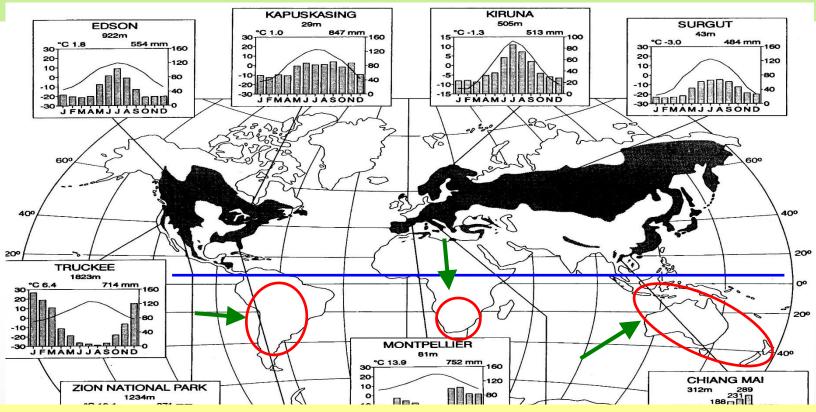
- <u>Industrial plantations</u>: plantations with fast-growing tree species for pulpwood, sawn wood or charcoal [80 %],
- <u>Plantations for rural development</u>: for fuel wood production, to protect water and other environmental services [20 %],

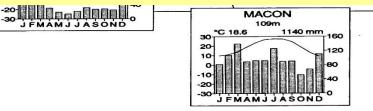
>or <u>Productive / Protective plantations</u> [75 % to 25 %]

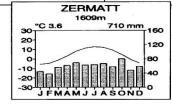
Homogenous systems to produce industrial timber

Seite 9 16.04.2024

Intern. Webinar


Photo: L. Nutto, Freiburg


Heterogeneous systems to produce high quality timber: pine as nurse crop

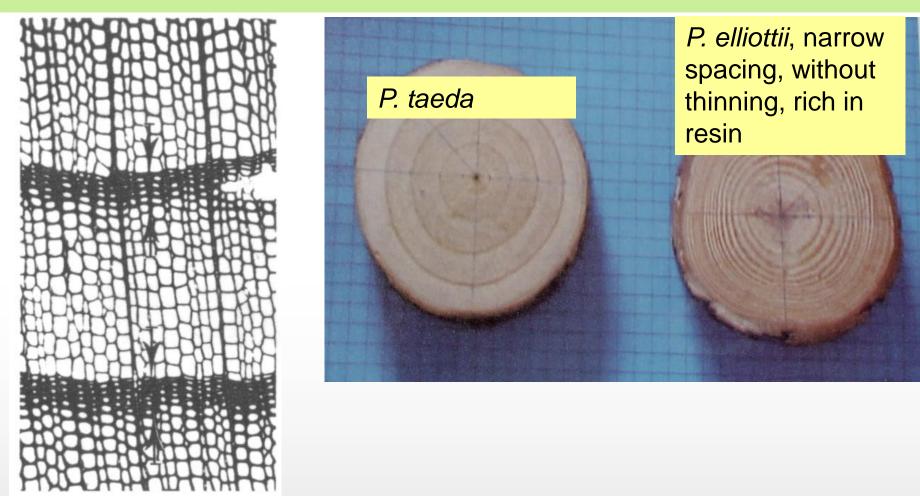


Genus pine (111 species)

'Southern hemisphere pine plantations': 4,6 Mill. ha

from: Kammesheidt et al. 2004

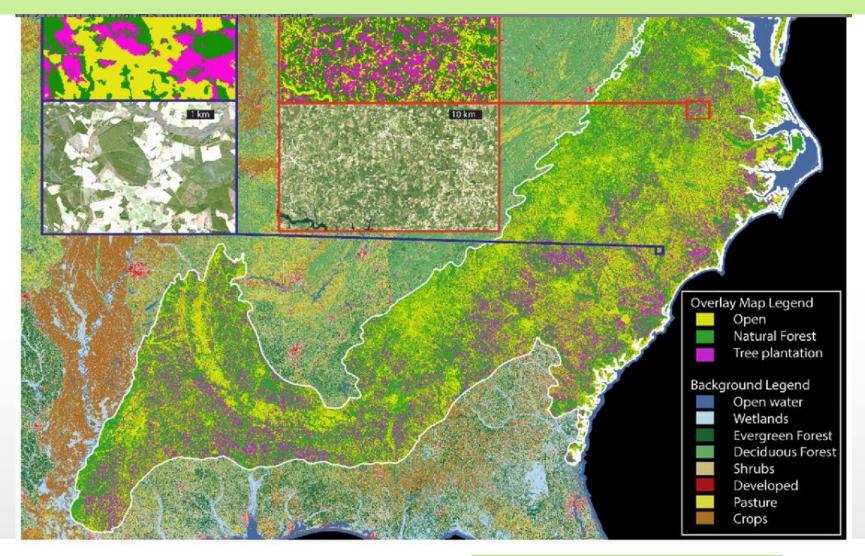
Peter Spathelf


11

16.04.2024

Intern. Webinar cycle in Pine silviculture: III. Pines in South Brazil

Characteristics of pine timber



pine

from Schweingruber (1983)

Pine plantations in the US Southeast

13
16.04.2024Peter Spathelf
Intern. Webinar cycle in Pine silviculture:from: Fagana et al. 2018

University of Applied Sciences

HNE

Fherswalde

,Real' pine plantations in Europe

(Radiata p. Ire; Maritime p., Le Landes F; Aleppo p. Esp)

Plantation tree species and productivity

Tree species	Re	gion	Productivity			
	trop./subtrop.	p./subtrop. temp. regions iv [m³/ha/y		rotation cycle[yr]		
Eucalyptus	Brazil, Uruguay	Chile, SW of Europe	12 - 30	7 - 10 (15)		
Eucalyptus clone	Brazil		40 - 80	6 - 8		
Pinus	Brazil, USA		15 - 25	15 - 25		
Acacia mangium	South East Asia		8 - 20	7 - 10		
Tectona grandis	Costa Rica, Ivory Coast, India		4 - 18	25 - 60		
Populus		Italy, France	8 - 25	7 - 15		
Pinus		New Zealand	18 - 24	15 - 25		

diverse sources

Growth and quality enhancement through genetic impovement: Inpacel, Brazil

Plantation tree species and productivity

The different growth rates of timber species lead to the fact that for <u>1 mill. tons of pulp</u> you need

- 100.000 ha of planted forests in Brazil,
- 300.000 ha in Spain, and
- 700.000 ha in Scandinavia

Globally 46 % of the industrial roundwood comes

from 7 % planted forests (South America > 90 %);

big 5: USA, Brazil, China, India, Chile

Tree species and economic return

Tree species	Reç	gion	Economic return			
	trop./subtrop.	temp. regions	IRR [%]	LEV [\$ / ha]		
Eucalyptus	Brazil		> 20	3000 - 5000		
Eucalyptus clone	Brazil		> 25			
Pinus	Brazil USA		10 - 20 10	2500		
Teak		Ghana	10			
Hardwoods		USA	2 - 5	-300		
Araucaria, Nothofagus		South America	5 - 13			
Native forest, best mgt.	South America		> 10			

diverse sources

SFM and planted forests

Establishment of Criteria & Indicators for sustainable

management of planted forests (E. G. Thai C & I, 2019):

 7 criteria and 35 indicators (among others: forest ecosystem health and adaptation, forest bidiversity, soil and water conservation)

Certification and planted forests

Table 5. Percentage of FSC-certified forest area by forest type, '08, '13, '14, '15, '16 and2017

Forest type	Apr 2008	Dec 2013	Dec 2014	Dec 2015 ¹	Dec 2016	Dec 2017	
Natural forest	65	64	64.5	65.64	65.15	65.64	
Mix (semi-natural and/or mix of plantation and natural forest)	27.5	27	27	26.05	25.97	26.29	
Plantations	7.5	9	8.5	8.28	8.86	8.06	

Source: FSC Certificate database, 3rd Jan 2018, Jan '17, '16, 2015 (1 as of 1 Dec 2015).

And: forest certification has not yet arrived in the tropics: only **11** % of all certified forests in 2017 !

Providing ecosystem services from pine plantations

Resin collection in pine plantations in Brazil (photo: L. Nutto, Freiburg)

Forest ecosystem goods and services

<u>Forest ecosystem goods and services (ES)</u> = transformation of natural assets into goods and other products that are valuable to people (Shelton et al. 2001)

- <u>Provisioning</u> services
- Supply of products / goods like timber, fibre, ...
 & NWFP
- <u>Regulating and supporting services</u>
- Climate and water regulation, mitigation of erosion
- Biodiversity and carbon sequestration
- <u>Cultural</u> services
- Spiritual enrichment and recreation

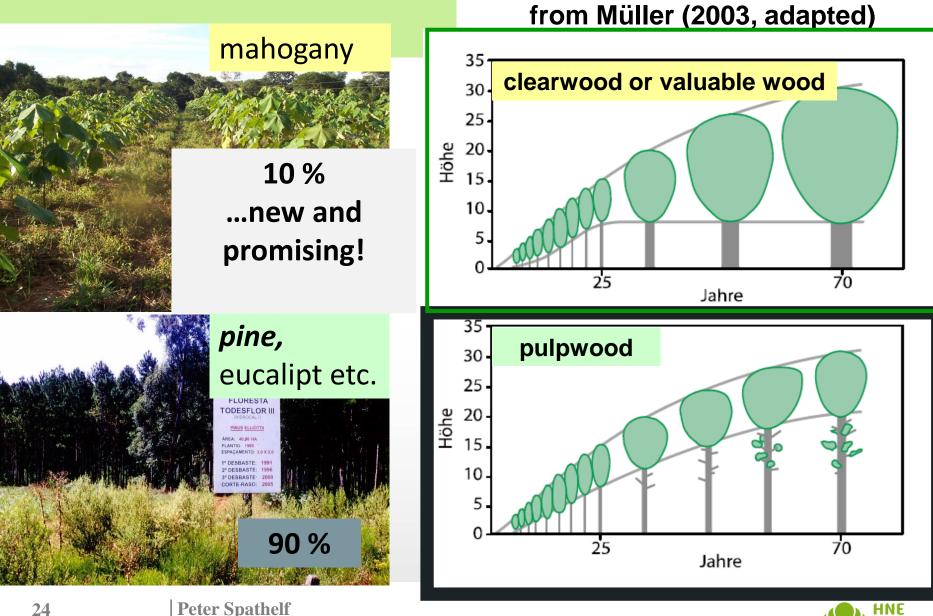
acc. to http://www.teebweb.org/

I. Provisioning services: Timber & NWFP

EGNOTRADE MADEIRAS Rua Visconde de São Gabriel, 392 sala 74 Prone + 55 (54) 452 5042 / Pax - 56 (54) 452 6698 85 700-000 - Bento Gonçalves - RS - Brusil www.braziliangine.com legnotrade@legnotrade.com br

23

16.04.2024


Peter Spathelf Intern. Webinar cycle in Pine silviculture:

Wood panel core.

Production strategies in pf

24 16.04.2024

Intern. Webinar cycle in Pine silviculture: III. Pines in South Brazil

HNE Eberswalde Eberswalde University for Sustainable Development University of Applied Sciences

Silvicultural management

stand model: yield table Pinus elliottii

Tabela de Produção Dinâmica para <i>Pinus elliottii</i>															
				-							Índice	de Síti	0 = 22		
										-	IMA (m³/ha)	30 = 18	3,2	
POVOAMENTO REMANESCENTE						DESBASTE				PRODUÇÃO TOTA		TOTAL	,		
ANO	DG	HM	НО	N/HA	G/HA	F	V/HA	N/HA	V/HA	VAC	%	V/HA	IMA	IPA	ANO
5	10,1	4,9	5,6	2446	19,4	4696	44,8			0.0	0,0	44,8	9		5
								25	1,1					27,7	
10	13,5	10,8	11,7	2400	34,4	4913	182,3	1124	114.0	1,1	0,6	183,4	18,3	20.7	10
15	17,4	14,7	15	1266	30,1	4990	221,1	1134	114,8	115,9	52,4	337,0	22,5	30,7	15
15	17,4	14,7	15	1200	50,1	4770	221,1	375	64,1	115,7	52,4	557,0	22,3	19,6	15
20	20,5	17,3	18,7	890	29,3	5052	255,2		,-	180,0	70,5	435,2	21,8		20
								169	39,8					13,2	
25	22,7	19,1	20,7	720	29,3	5043	281,4			219,8	78,1	501,2	20,0		25
(20)	24.2	20.0		(21	20.4	5052	200.2	89	25,5	045.2	017			8,9	20
(30)	24,3	20,2	$\begin{pmatrix} 22 \end{pmatrix}$	631	29,4	5053	300,3	50	16,2	245,3	81,7	545,6	(18,2)	5,8	30
35	25,4	20,9	22,9	581	29,6	5059	313,2	50	10,2	261,5	83,5	574,7	16,4	5,0	35
55	<i>23</i> , r	20,9	22,9	501	27,0	5057	515,2	28	9,9	201,5	05,5	571,7	10,1	1,6	55
40	26,1	21,4	23,4	553	29,7	5063	321,4	-	- ,-	271,4	84,4	592,9	14,8	7 -	40

Schneider 1984

II. Regulating services watershed protection...

productive plantation

legal reserve (natural forest)

source

productive plantation

faunal corridor

protected area (APP)

river

From Schumacher 2007

Water loss through planted forests

Countermeasures

On landscape level

protected area management (Brazil: APPs)

On stand level

- use of water efficient trees
- increase of soil carbon content
- residue management to reduce runoff and enhance infiltration

II. Regulating services: ...and site management

Schumacher 2007

See Case Study

III. Supporting services: what about biodiversity...

Biodiversity loss through planted forests

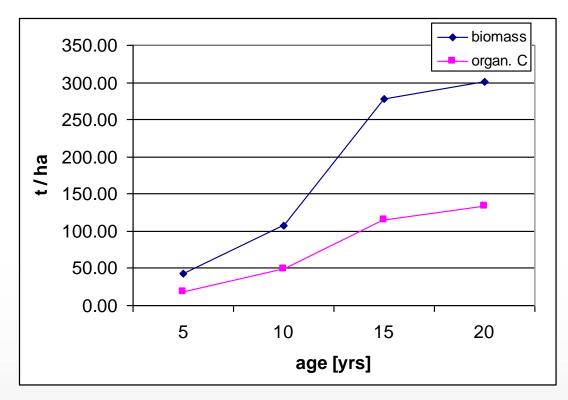
Countermeasures

On landscape level

Maintain large patches, connectivity and structural complexity on landscape level (riparian/ buffer zones) in the plantation matrix; reduction of pressure on these areas through *land sparing*

On stand level

- use stand mgmt options to create structural variability: longer rotations, thinning to enhance light conditions (understorey), retention, admixtures...
- create (micro)habitats for plants and animals on stand level (bark, uprooted tree sections, holes,)
- avoid soil tillage and weeding


III. Supporting services: ...and carbon storage

Measures to increase carbon sinks through pf

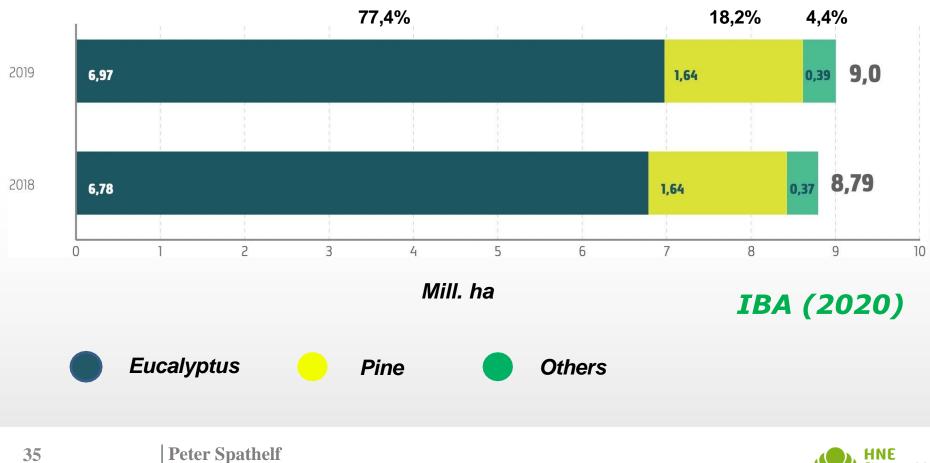
- afforestation on 'new lands' (restoration)
- tree species choice (specific gravity of trees), mixture
- increase of rotation length, thus accumulation of standing volume
- reduction of thinning intensity
- reduction of disturbance intensity (pest and fire management)
- maintenance of soil fertility
- Climate-smart forestry

Carbon storage and planted forests

Note:

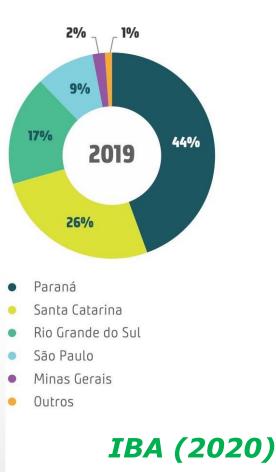
Small carbon stocks in pf, but high sequestration rates (sink!), compared to unmanaged forests or selectively managed natural forests

Biomass and organic C in loblolly pine plantations; Schumacher et al., 2002

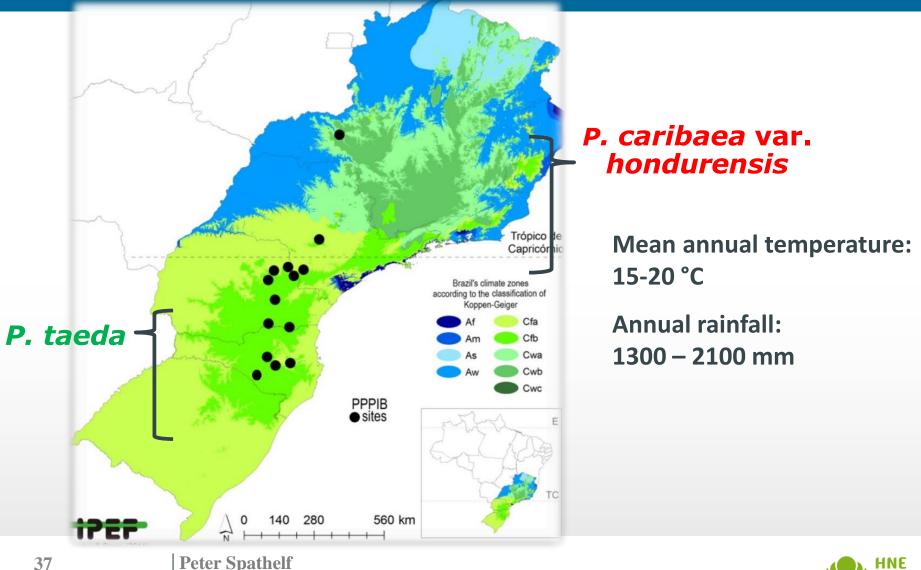


Case study: silviculture & ecology of (fast growing) pine plantations from South Brazil

Prof. Dr. nat. techn. Mauro Valdir Schumacher <u>mauro.schumacher@ufsm.br</u>



Plantations in Brazil


Pine plantations in Brazilian federal states

1,8 ----Average productivity: 31,3 m³ ha⁻¹ year⁻¹ 0.02 1,6 0,04 0,08 0,04 0,04 0,03 0.03 0,16 0,12 0,12 0,12 0.12 1,4 0.26 0.18 0.18 0.18 0.18 1,2 0,28 1,0 0,45 0,8 0,43 0.54 0,54 0,55 0,55 0,6 0.4 0,2 0,72 0,67 0,67 0,66 0,66 0,79 0.0 2014 2015 2016 2017 2018 2019 Mill. ha

Location and natural environment

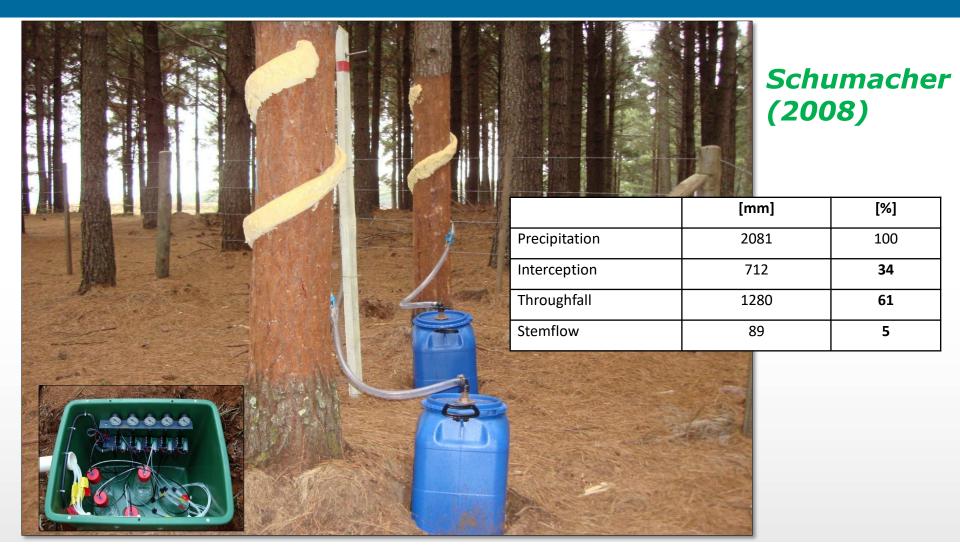
16.04.2024

Intern. Webinar cycle in Pine silviculture: III. Pines in South Brazil

Pine plantations

Bulk deposition open air

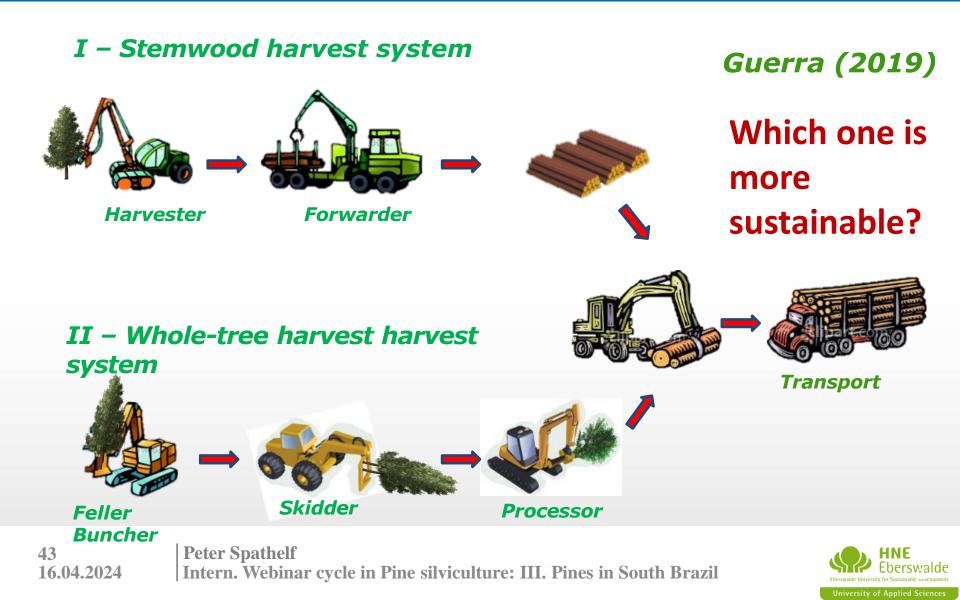
Schumacher (2015)


Precipitation throughfall in the pine stand

Schumacher (2009)

Stemflow pine

Use of biomass for energy by industry

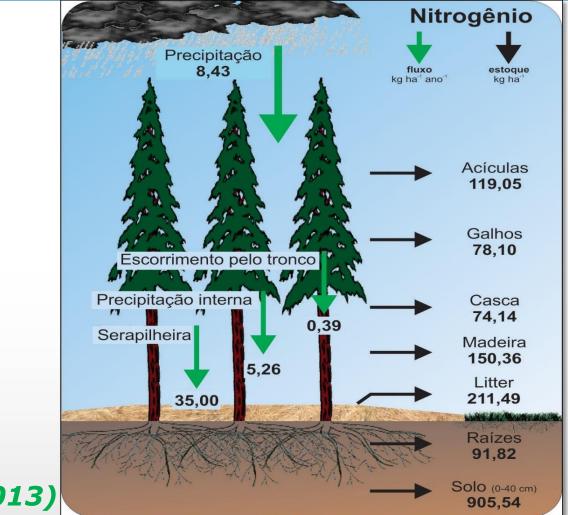


42Peter Spathelf16.04.2024Intern. Webinar cycle in Pine silviculture: III. Pines in South Brazil

Jniversity of Applied Sciences

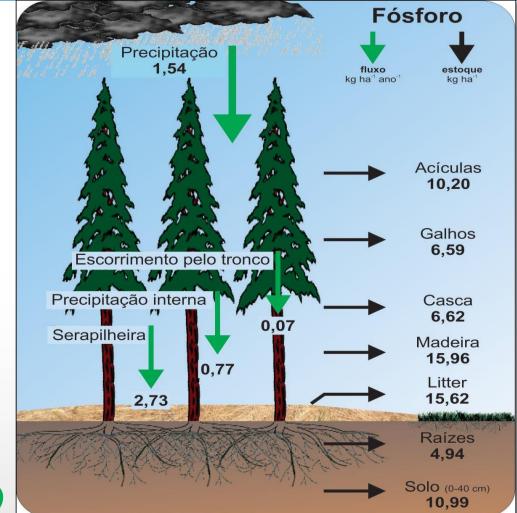
Impact of harvest system on soil fertility

Nutrient removal and intervention type (*P. taeda, 27 years*)


Schumacher et al. (2007)

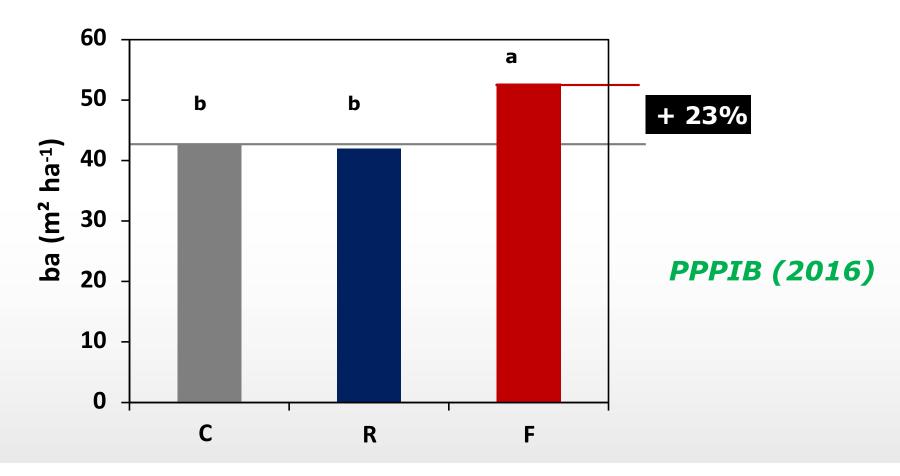
	Type of intervention	Removal (kg ha-1)			Average annual removal (kg ha-1)		
		N	Р	K	N	Р	K
	Total	527,2	46,6	186,8	19,5	1,72	6,29
	Stemwood with bark	269,0	23,3	98,2	9,96	0,86	3,63
	Stemwood	210,8	18,8	79,5	7,8	0,69	2,94

Nitrogen - P. taeda

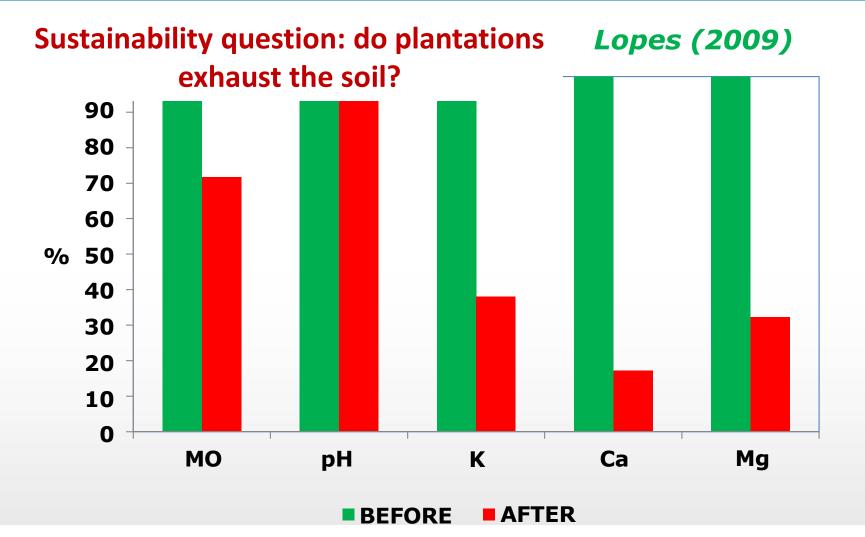

Lopes (2013)

45
16.04.2024Peter Spathelf
Intern. Webinar cycle in Pine silviculture: III. Pines in South Brazil

Phosphorous - P. taeda


Lopes (2013)

Impact of treatment



Dominating factor = nutrition

Change of soil characteristics in *P. taeda* after 15 years

Pine – an option for the restoration of degraded areas (acc. to Souza 2015)

Planting of *P. taeda*

51
16.04.2024Peter Spathelf
Intern. Webinar cycle in Pine silviculture: III. Pines in South Brazil

Fertilization of *P. taeda*

P. taeda after 10 months

Liming of *P. taeda*

P. taeda after 29 months

56
16.04.2024Peter Spathelf
Intern. Webinar cycle in Pine silviculture: III. Pines in South Brazil

Some conclusions on the case study

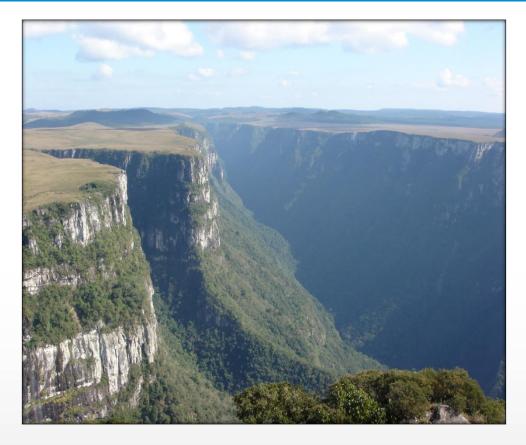
Nutrient loss can be avoided by

- managing the internal nutrient cycle (residue management/ mulching; no burning of residues)
- leaving foliage, branches and bark on the site (no wholetree harvesting)
- practicing cautious harvest operations (no soil compaction)

Synthesis: Pine plantation forestry...

- 1. can provide the raw material for growing economies (e.g. pulpwood, sawn wood, valuable timber, NWFPs...)
- and valuable contributions to the 2. socioeconomic conditions of a region (...e.g. regulating and supporting ecosystem services)
- 3. is an option to restore degraded land

58



Thank you!

Contact: <u>Peter.Spathelf@hnee.de</u> (www.hnee.de/Spathelf)

mauro.schumacher@ufsm.br

